* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(X,X) -> c(X) f(X,c(X)) -> f(s(X),X) f(s(X),X) -> f(X,a(X)) - Signature: {f/2} / {a/1,c/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {a,c,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) - Weak TRS: f(X,X) -> c(X) f(X,c(X)) -> f(s(X),X) f(s(X),X) -> f(X,a(X)) - Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,c,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) - Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,c,s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:f#(X,X) -> c_1() 2:S:f#(X,c(X)) -> c_2(f#(s(X),X)) -->_1 f#(s(X),X) -> c_3(f#(X,a(X))):3 3:S:f#(s(X),X) -> c_3(f#(X,a(X))) The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {a,c,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))